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Quantitative Structure—Activity Relationship Studies of Sulfamates
RNHSOsNa: Distinction between Sweet, Sweet-Bitter, and Bitter

Molecules
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Several different QSAR techniques have been applied to sweetness data for 50 sulfamates, RNHSO3-
Na (21 sweet, 20 sweet-bitter, and 9 bitter). Stepwise discriminant analysis has been used to
separate the 50 molecules into 3 classes, sweet, sweet-bitter, and bitter. Cluster analysis using
two principal components can clearly distinguish between the sweet and sweet-bitter molecules
but not between all three classes. Regression analysis has been used to develop equations for
parameters fitting to log(RS) (RS, relative sweetness). The genetic algorithm method has been used
to select parameters, and high correlations between log(RS) and a range of parameters have been
achieved. Molecular field analysis followed by selection of relevant grid points by genetic algorithm
yielded a result in which six grid points gave a high correlation coefficient (r2 = 0.958, XVr2 =

0.902).
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INTRODUCTION

Quantitative structure—activity relationships (QSARS)
have been used for many years to establish which
structural and physical properties of a set of molecules
are most responsible for their biological activity. The
main thrust of QSAR studies has been in the field of
drug design, but there have been several applications
to the taste properties of molecules, particularly involv-
ing sweetness. The main groups of sweeteners that
have been subjected to various types of QSAR studies
are the nitro- and cyanoanilines (Deutsch et al., 1966;
McFarland, 1971; Holtje and Kier, 1974; Ilwamura,
1980; Kier, 1985; van der Heijden et al., 1985a), various
aspartyl dipeptide derivatives (van der Heijden et al.,
1979, 1985a; lwamura, 1981; Miyashita et al., 1986a),
oximes (perillartines) (lwamura, 1980; van der Heijden
et al., 1985b; Acton et al., 1976; Takahashi et al., 1982,
1984; Zalewski, 1992), -(3-hydroxy and 4-methoxy-
phenylethylbenzenes (Miyashita et al., 1989), ace-
sulfames, tryptophans, saccharins, chlorocarbohydrates,
ureas, isocoumarins (van der Heijden, 1985a,b), and
sulfamates (Spillane and McGlinchey, 1981; Spillane
and Sheahan, 1989; Spillane et al., 1983, 1989, 1994;
Miyashita et al., 1986b; Okuyama et al., 1988). For the
latter group, which includes cyclamate (N-cyclohexyl-
sulfamate), we have previously developed semi-QSARs
using parameters measured with Corey—Pauling—Kol-
tun (CPK) space-filling models of the R section of the
sulfamates RNHSOzNa. This approach has been suc-
cessful for carbosulfamates (Spillane and McGlinchey,
1981; Spillane and Sheahan, 1989) and monosubstituted
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aromatic sulfamates (Spillane et al., 1989, 1994) and
has shown good predictive ability. A pattern recognition
method (Miyashita et al., 1986a,b; Ikuyama et al., 1988),
discriminant analysis and principal component analysis
(PCA) (Zalewski, 1992), and use of STERIMOL param-
eters (van der Heijden et al., 1985a,b) have been
employed to develop structure—taste relationships for
the carbosulfamates. Linear discriminant analysis suc-
cessfully classified ~50 heterosulfamates into sweet and
nonsweet categories with an overall classification of 86%
(Spillane et al., 1983, 1989).

In the present work several different QSAR tech-
niques have been applied to a database of relative
sweetness (RS) for a series of 21 sodium sulfamates,
RNHSO3Na, of widely differing structural types, where
R is straight and branched aliphatic, alicyclic, aromatic,
and heterocyclic. In addition, another 20 sodium sulf-
amates (9 disubstituted aromatic and 11 monosubsti-
tuted aromatic), which displayed predominantly bitter
and sweet components in their taste profiles, have been
synthesized and are used in the present QSAR studies.
A further 9 mono- and disubstituted benzosulfamates
with exclusively bitter taste components are also in-
cluded in this study. All molecules are shown in Figure
1; the sweet-tasting molecules are numbered 1—21, the
sweet-bitter-tasting molecules 22—41, and the bitter
molecules 42—50.

Chemistry. All of the sulfamates were synthesized
either by reaction of the appropriate amine with chloro-
sulfonic acid in chloroform (Spillane et al., 1993) or by
reaction of amine with pyridine— or a-picoline—sulfur
trioxide in excess base (Spillane et al., 1993) as solvent.
Sodium 2-thiazolylsulfamate was prepared according to
the procedure of Hurd and Kharasch (1946). The
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Figure 1. Fifty molecules used in this work. Molecules 1—21 taste sweet, 22—41, sweet-bitter, and 42—50, bitter.

initially formed ammonium or pyridinium salts were
treated with sodium hydroxide, and after isolation, the
crude sodium sulfamates were recrystallized several
times from aqueous ethanol until they were free of
sulfate (barium chloride test) and sodium chloride (silver
nitrate test) and gave a quantitative precipitate of
barium sulfate when their aqueous solution was heated
with concentrated HCI in the presence of barium
chloride. The sulfamates were characterized by IR and
C, H, and N analysis.

Methodology. These sulfamates form a discrete set
of molecules with similar shapes and properties and are
therefore well suited to QSAR techniques. There is very
little information about the sweet taste receptor, and
therefore QSARSs offer the best method for elucidating
the important features of the molecules that give rise
to the sweet taste.

Structures. The structures of all 50 molecules (21
sweet, 20 sweet-bitter, and 9 bitter) were built using
CERIUS2 software (Molecular Simulations Inc., 1996).
The sulfamate group was given an identical conforma-
tion in all of the compounds so that the only variation
was in the R group. For all of the molecules, a charge
of —1 was applied to the whole molecule using the PM3
Hamiltonian in the MOPAC 6.0 semiempirical soft-

ware package (1995). In all cases, the positive counter-
ion was not considered. For many of the sulfamates the
lowest energy conformation was obtained straight-
forwardly by energy minimization, which was carried
out using the default Dreiding2 force field. However,
for some of the molecules, it was necessary to carry out
a conformational analysis, which was done using the
CERIUS2 software. In all cases only one conforma-
tion of the molecule was used in subsequent calcula-
tions. It can be argued that these lowest energy
conformations may not necessarily be the active ones
but as there is no evidence as to the active conforma-
tions, it seems logical to use the lowest energy calcula-
tions in this work.

Calculations of Properties. Values of relative
sweetness were taken from the literature or obtained
from a taste panel (see Experimental Procedures).
Values of k, were experimentally measured using
reversed-phase HPLC (see Experimental Procedures).
Corey—Pauling—Koltun volumes (Vcpk) were measured
as described previously (Spillane et al., 1994). Third-
order molecular connectivities (3ym) were calculated
using the method of Kier and Hall (1976). A ring
connectivity factor is not required in these calculations.
A typical calculation (for compound 8) is shown in
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Figure 2. Method of calculation of the Kier 3y, parameter P2 for molecule 8.

Table 1. RS of Sulfamates Compared to 3% (w/v)
Sucrose Solution

range concentration
no.2 sampled, mol/L equivalent,” mol/L RS¢
4 0.015-0.0015 0.0233 + 0.0066 6.8
5 0.05—0.0005 0.0081 + 0.00094 19.6
6 0.06—0.0006 0.0099 + 0.0021 16.0
11 0.04—0.0008 0.0073 + 0.0014 15.8
12 0.05—0.0005 0.0032 + 0.00085 42.9
13 0.008—0.0002 0.0018 + 0.00037 70.5
14 0.05—0.002 0.0149 + 0.0047 8.7
19 0.01-0.00025 0.0051 + 0.00072 245
20 0.05—0.001 0.0165 + 0.0043 8.6

a Eight tasters were used for each compound except 4, for which
five tasters were used. ® Each entry is the pooled mean value +
standard deviation for all tasters. ¢ RS is defined as the concentra-
tion of the standard sucrose solution, mg/mL i.e., 30/the concentra-
tion of the equivalent sulfamate solution, mg/mL.

Figure 2. Taft o* values were taken from the literature
or calculated. The ky, 3¢m, and o* values are included
in Table 2 as parameters P1, P2, and P3, respectively.
In addition to these values, a wide range of steric and
electronic properties were calculated in the software
packages TSAR (Oxford Molecular Ltd., 1996) and
CERIUS2 (Molecular Simulations Inc., 1996). For each
structure, one conformation was input and used by the
software to calculate molecular properties such as ym
and y, connectivity indices, the Verloop parameters of
size and shape, the capacity factor log ky, molecular
surface areas and volumes, molar refractivity, and
solubility. Capacity factors considered to be a measure
of hydrophobicity were calculated from the database in
Hansch et al. (1991). In addition, electronic properties
such as dipole moments, HOMO and LUMO energies,
heat of formation, and solubility were calculated using
the MOPAC program interfaced to CERIUS2. Solubili-
ties were calculated directly in CERIUS2. The full list
of parameters used, P1, ..., P33, and their values are
given in Table 2.

CLASSIFICATION ALGORITHMS

Discriminant Analysis (DA). DA is a supervised
learning technique. It includes the dependent param-
eter and selects the parameters important for discrimi-
nation between different sets. This uses a Mahalanobis
algorithm to select important parameters and uses this
to plot the data in multidimensional space. For each
class of molecules, the distance of each point from the
center of each cluster is measured, and this score then
represents the classification of the molecule. These can
then be plotted in 2D to show the class membership.

Principal Component Analysis (PCA). PCA was
carried out using TSAR software on various subsets of
the parameters, using particularly those established by
the genetic algorithm as the most important. It is
important for the success of the method that the
parameters included in the calculation are not highly
correlated. The PCA allows the replacement of a large
number of parameters by a much smaller number of
principal components, which explain much of the dis-
crepancies within the dataset. In PCA, the dependent
parameter, in this case log(RS), is not included explic-
itly, and so all 50 compounds (the sweet, sweet-bitter,
and bitter compounds) could be included. By plotting
the principal components, it is often possible to cluster
the data and highlight molecules in different families.

QUANTITATIVE/PREDICITIVE ALGORITHMS

Regression Analysis: Selection of Parameters.
A regression equation relates a dependent parameter,
in this case log(RS) to a set of parameters in a linear
equation

log(RS) = a, + a;p; + a,p, + agp; + ... + ap,

where p; are parameters and a; constants calculated to
get the best fit to the log(RS) value. In previous work
(Spillane et al., 1996) we considered only four param-
eters, log(kw), 3¢m, 0*, and Vcpk, and established which



J. Agric. Food Chem., Vol. 46, No. 8, 1998 3019

QSAR Studies of Sulfamates

"(dvs1) Jereweded gg xoq doolisA ged “(HvSL) 1918wered g xoq doolJaA zed "(dvSL) Je1eweded €g xoq doolsA (Ted "(HvSL) J918weled zg xoq dool4dA 0ed "(HVSL) Jerewered 19 xoq doolsA :62d (HVSL)
J918weaed 7 xoq doojdsA :82d ‘(MVS.L) xepul A1IAIIBUU0I Jejndsjow M :2zd ((HVS.L) Xapul A1IA1308UU0d JeIndsjow X, :9zd ‘(¥VS.L) Xapul A1IAI}8UU0I Jejndajow ; :Gzd (dVS.L) Xapul ALIAI08UUO0d Je|ndsjow "X, vZd
"(zsSN1d30) @puswow ajodip jo Jusuodwod Z :gzd "(2SN1Y3D) aAuswow ajodip Jo yusuodwod A :zzd "(2SNIY¥30) aauswow ajodip o 3usuodwod X Tzd (ZSN1E3D) Xapul ALA08UU0D Je[ndsjow g :0zd (2SNI¥3D)
Aungezifesojspasdns (6Td (2SN1EID) ;W B gz 0T 3usuodwiod z/ersut Jo Juswow [edound :8Td (2SNIYAD) - Wd B ¢ 0T 3usUOdWOd A/eiaaul jo Juswow fedpund :2Td (2SNIYID) ;W B g 0T Jusuodwiod X/eriaul Jo
1uswow fedpund :9Td (2SN1YID) -Wd B ¢_0T/en8ul Jo Juswow [edioulid GTd "(2SNIY¥TD) ¢-Wo/AlAIORIEI JejoW HTd (2SNI1YTD) IUs10144800 uoired Jo Bol :€Td "(OVAOW) AS/OINOH 0 ABisus :ZT1d (OVdOW)
1-l0W [edx/uoneWIO) JO 188y TTd "(2SNIYID) 1-|0W [ed/481eM Ul UOIIBAIOSSIP Jo ABisud 814 0Td "(2SNIYTD) ¢-wd B/Aususp :6d "(OVdOW) aselodip :8d "(OVdOIN) A8/ONNT Jo AB1sus :2d "(2SNIYID) gy/oWn|on
Jenosjow :9d (ZSNI1Y3D) Ly es e soeLIns Jejnosjow :Gd "(2SNIYID) senljiqezire|jod olwole Jo wns :vd "(986T ‘MeM pue UojAe]) sanjeA To woly parewiss sem 0g a|ndsjow 1oy anfea syl (T66T “Ie 18 YyosueH) sanfea
LYo BuIsn payewI1ss a1am T pue ET S9INJB|0W 40} SAN[EA ING ‘SIN1eJS1| Syl WOL) USR] SSNJeA 0 Hel :€d Z 9InBi4 ul payesisn||l pue 1xa1 8yl Ul pagiiosap se psie|ndfeD "Xspul ALAIIBUU0D Jejndsjowl ‘WX, :zd '6T = U
12570 = 24 ‘'SEL’T + ("1)Bo] 606'T = "X ‘6T = U ‘9TL°0 = 24 ‘690°99T + (")B0] 6TH GTT = A “B'd ‘serewreyns ay3 oy punoy suorrenbs Buimoljoy syl Ag paiaipaad sanfen ™ ol ays jo abessne ue Buiiel Ag payewnss sem
0Z 8|nJajow 40} anjeA ayl ‘D1dH Buisn painseaw ““ 6o|

Td "(eG/6T ‘191ned pue a4joN) elep ainyelsll] Buisn pajewilss sem Qg 9|ndvjol 1xa1 Ul sjrelaq ‘|aued aisel e Buisn painseaw Sy Jo B0 *(SH)60| SI AUANIY -

8v's ¥8¥ 08¢ vl¢ vee 8S9L €E€T ¢9€ 0€v 86'S CT'T 82T 900T— TI'C 00Fv 96'96E ¥¥'9CcE <¢6'00T 9L'€CS 95'9¥ 09¢ 18°0T— LL'6 L6T— ¢ST ¥8¥T ¥0'8— 08¢9T T6'8T¢ 8Y'EI68 0S
89y GSv SGT'E€ LT'C¢ 6LT 18.L GLT 80V €6€ 0L'S GL¢ 6L¢€ vLv— S¥¢c TL0 VI'99€ €€06C 8E<¢6 <¢e€9lv 8LVS 61'S 98'0T— Gee— 89— /ST /L/v1T 808— GT'€ST G9'86T ¥.'TTO0T 24
LSV LSVv LT v8T TLT ¥€9 GST 06€ v6'€ 0L'S €9¢ 8¥e Svv— €L¢ vIT'0 LZ'Tve ¢8'G8C €0¢L v6'0Syr 8L7S 80'S ¢6'0T— 60T— 96'9— 89T 6T¥T 9T'8— €L¢ST <6'86T V. 'TT00T 14
oSy vry €6'c 18¢ 8€¢ GSL 69T TITV ¥9¥ ¥8S 80T 6TT LEV— ST'C 00F CTE0F 6982C€ OTLTT OT'EES €8'ES <CE€ 0€'TT— 0¢'96 cLST TLT 6LTT 888— O0C€EST 9T'€cc P¥EC806 Ly
LSV 80V 8€E€ LlL¢ 8EC VSL ¢LT 60V 8V LLv VIT VIT TL6— vE€C LTO Lv'T6E 9ETCE 0C00T 0€91S TEVS 61V TTTT- SE9Y 9eY Y9'T ¢pel T1S98— 9¥'E€ST L2'90C VO0'L¥S6 o
1Sy 0Sv Lg&€v 06'C 0C¢c ¥€'9 ¢L'T 60V 8V LL'S 68€ G2'S T18.— 9¢C G€0 v8cere 90¢CTc OFV09T 98'€er TEVS <CEV 60°TT— v8'.LY Sy S9'T 9§Vl /[S8— G6'¢ST GSL'€0C V0'L¥S6 St
6EY LEV 6t ETE G6'T €€9 8TT TCE€ ¢8€ SG9F% 09v €€ TIOT— €LT ¥90 98TLCc <¢99¢¢ v.V¥.L €LT9E 0L8y 9S°€ vO'TT—- L6'8Y 8EY 85T TEST /L£8— 09LET ¥¥'/8T 9¢°,008 144
89'G 996G Tge T€C <LT TTL 6TT SPE <¢ov 0€S 18T LZv G6€E— <¢0C 69T V0'68C G8LcCc 9€8L 0€9.E 0625 V9¢C ¢6'0T— ¢S50e— 6€.— 6ET VIET 908— O0LEST <¢SE€IC 00TOV8 PaAI3sqo Jou sanjen gy
TT'S ¢0S Tee 9Tt S6'T LL'9 660 60€ 89€C <0G <c€c¢ [Lg¢ 85G— LZ'T 09T 0Cvee L6'9Lc G868 Geevy <¢9'8y 6EV— 86'0T— 68TrVT— 950¢— 09T €T'ST G2'8— TE0ST SV6T¢c 92989 sa|nJsjow Janliq  Zy
S9'€ v9'€ ¢c¢e TTC 9LT OV. 060 90€ €L'E €8¥% €9Fv ¥8¢ €90T—- 90¢ TST 0L96¢ 0€¢9¢ 6STS OV'66E PSSy 00— 090T— 9v'eS— T188T— ¢ST L99T 08.L— O06'IvT 067¥6T 090608 114
967 <6V €€V ¢9€ €SC 869 €9T ¢SV 89V 689 G6¢C SGTY T6v— 00€ 690 068T€ 00.yc 0LL0T O0S'LIv 6V'V9 69€— <Z90T— PSve— 898T— 02T 99GT 69.— 06067 0L05¢ 051806 ov
o'y Ovv 6€v L6T €6T ¥e'9 GST €L'¢ €L¢ 1€9 <20¢ ¢9§ 0Te— G¢'¢ 0L0 0S0g€c Ovv.T Ocv. OFV86C OV'SS <9v— €90T— €6'GT— SO06T— LZ'T 9L'GT <L'.— Ov.ST 09'G0¢ 005508 6€
LEV €€y 92t 90¢ €L'T 8€L 9ST vL'E €Le 1€§ 16¢ vev OTv— PvZ'c <¢L'T 00€EC 0C'60c 168y 069T€ O0O¥V'SS <9v— G90T— 626— G0'6T— 8¢'T 8L'ST 0L/.— OT'.LST 02'¥IZ 00'SS08 8¢
o'y 9¥'y €2¢€ 18T 08T 6./ GST 06€ V¥6€ 0L'S Ove evy TSv— 99¢C 0.0 0S¥9e 0L¢T€ G€89 0T'S8Y [8'GS 00'S v8'0T— <2Ev— 10°/— 89T 60ST LT'8— 09¢ST 0,60 000T00T A
G6'€ G6€ €¢€ <¢LT S9T 1TI€9 060 v9¢ ¢TI L0V 6S¢ T€v GS€— 960 98T 099T¢c 0S6.T €6.S 0¢'l8C 069y <0V ¥6'0T— €6'T.— /89— ¢9T G€ST 1€8— O0r'8cT 08€LT 069S5TL 9e
LEY €€y GZ't 86T ¢L'T 8L, S9T T6€ €8¢ 195G Ove €Iy 9.¢— PvE€¢ 85T 0L'60€ 0998 V06 08vey ¥9'SS Ov'v— <¢80T— STv— ¢reT— €eV'T TTVPT L6'L— O0SVYST 0L°90C OF'€E06 SE
L€V VY€V G2t L0C ¢LT €98 9¢T €Eve v8E€ ¢L'S /89 ¥Ov G¥9— 61C 990 0S900€ 0Lv.Z 9925 0S0T¥ Gv'ey 820 1G°0T— vC'6€E— 90€T— <CET VI9T LG9/.— OTVY9T 009¢C 08'66E8 e
€€'S 60'G 6V €LC 8LT €89 9¢T eve v¥8¢ <¢L'S 9TT LSVv 8Tv— 8TC OVT 06¢cc 0CLST 8668 0¢'/8C ¢9'85 88Y— 8S0T— €8Ge— 99¢c— €€T 6v¥T 99— O0T'€9T 0€8T¢ 08668 €e
TS TLS Lg€€ 62€ 9LT 0€9 6TT 1I8€ TE€V 96'S LLT 08¥v Lve— 08¢ 990 0Svec 06'.9T 9€/.6 0L96¢ <CT'6S 80Vv— 6L0T— 92¢C— 09'8T— €T 0S¥T S6'2— O00V.T 0.L¢€C 010258 [4
€2’ €¢e GT'E 69T 99T 8€8 TIT'T ¢6¢ 6L€ €€V 80¢ €0¥ TOV— GOC¢ ¢9T 0E¥8C 0LG9¢ O0OT'SE 0L06€ vO'I¥r 60v— G6'0T— S6'9€ 89°LT— 6¥'T 8T'ET 82'8— O0LCET O0r'88T 000169 €
G€'G 9¢’S €t 1I6Cc 99T ¢€9 180 TLC 8vE 08¥% 60€ cve cvv— TLT 89T 0LG6T 0SCST <¢6'99 0L95¢ Gv'ov 180 090T— €.8¢— 6S€T— B8ET vIVT ¢L/.— OV9yT 05661 O0v8E8L 0e
€2'¢ ¢T'e G0€ 80¢C 66T Lg€8 68T 8EY STV G6'S GC'T 92T ¢<¢l¢— 8LT €9T 0€T95 Ov'IvS vS9€ 0L08L €ETCYr 66V 08'0T— 0.L'T¢ 68'.— G6'T <¢T'ST 80'8— 00€ST 09'€0C 00°0T69 6¢
€ge 8Te 1ITE €6T /8T v08 19T 68€ /[8€ 6£S 6TT 82T LS¢— 8LT €9T 069y 09'LTr L6'GE 0V'S09 VSIS T6°€ 6.°0T— €€'8 89'8— 9L'T ¥IT'ST 908— 0L¢PT 0S'S6T 00°0T69 8¢
€2 0Ccc €ETe v8T 8LT 6L, TCT 6T¢C 9v'e 8SY PeC ¥6'E T9V— 68T €9T 08C0E OVv¥8C €0GE 06'9TF 9205 95V 08'0T— €8¢— 6.9— 1IST L6¥YT €08— O0CLET 0.68T 0072C.LV8 x4
¢ce ¢ce ST 0OLT 99T ¥T°'L 080 8ve 90€ LL'E€ 6¢¢C 96€ 9vv— LTT TLO OFEEC 009TC v6'EE 08'6TE 8LSY VOV ¢8'0T— €6'¢r— €L9— €ST 8y¥T T08— 0C¥cT OTLLT 09vr0L 9¢
9T'S 90'G €€¢€ €Tt L6'T ¢€9 660 60€ 89€ ¢0S TIT'C 80€ LZv— <¢€T 88T 0018 060T¢c 06'€0T 0¥99€ <¢987y 9¥'v— L6'0T— OTVYPI— G9°0¢c— <¢9T T9¥T GE8— 0E8YT 08'86T 0E£989L S¢
82t v¢e €2t LS¢ vve ¢v8 6TT 18¢ 1TIEY 96G €9¢ 80V vES— €SC 0L0 099vE OF'LEE €8'Er 0LG8y <165 60V— ¢90T— /LG8T— ¢98T— €T ¢89T T./.— O06V.T 0£9€C 010258 ve
€ce €ce 9T'e 9T'e LLT €¥8 960 T’ €6'€ 60S Pr¢ vOv €€S9— G0'¢ S9T 0.98¢ 06'89¢ vI'Tvyr 0C'S6E VS'vS 6Vv— €90T— ¢8vI— ¥88T— LT LS9T €L/.— 09.ST O0T'6IC 069008 paurelqo jou sanjea €2
LEV €€v GZ'€ 96T ¢L'T T1€9 TTT <0t LEE 6EV LEC 6TV v6'e— €8T 690 069.T 00¢ST LTy 06.g€¢ €005 90S— 8L0T— 00— vT'6T— vET <9VT 88.— O088ET 06'T6T 09°C6V.L S8|NJ8JoW 189MS/I8NI] 22
or's veS 0Te 8€¢ 99T T6'S 620 6€¢C 68¢ Tvy 90¢ LL'G OVe— Lv'e GL0 09Gee 0¢GI¢ vETIE OV'ETE 909§ L6'E 2¢8'TT— 60¢E— <Zvv— 61T TT0T TO6— O0EO0ST 0S.6T 016229 T00— VPST 2€0 8T'T 1¢
og'e 0ge GlL¢ L6T ¥.LT 6LG L[S0 GS¢ €6¢c Lv'e 90¢C vy €2S— T¢T TL0 080ST 0¢GET vIce 0TS0 98'%ec 910 Y0'TT— 9¢'GC 6€°0T— €9T €6'€T 0T'8— 0.60T 099yT 0T'60cL v.0 ¥S'T ¢T0— ¥6'0 0C
20y <¢Ov v8€ 89T 99T 0€9 €60 99¢ TT'E LOv €0C 06'€ 86€— TOT L¥O0 0€€9C 0C9T¢ 69€9 099ve vI'SY Lv'v TOTT— T2'18— ¢59— ¢9T B89€ET L¥'8— O0OV8cT 08GLT 069ST. V9T ¥8'0 100 6T 6T
v8'€ ¥8€ €2¢ TLT [L9T 0€9 080 8¥¢ 90€ LL€ 1T¢¢ S€v 6€v— LTT 9¥'T 0620C 06¥.T 0267y 0.6/ 20vy €€V 98°'0T— 8¥'0v— T199— ST 6€ST T¢8— 0SGT 0LG.T 09vv0L 280 00T 600— 60T 8T
99y S9v €¢t 9T'¢c €LT 6¥V9 T9T 68€ L8E 6€S 80T ¥ET <¢G¢— GLT 8y0 089€E 0€€LC 6008 OTTvyr 8L6V 0CV €8'0T— G¥'6 §6'8— ¥.T 0€'ST 0T'8— O00vyT 0EG6T 000169 980 S0¢ €€0 SOT LT
STy 0Ty ¢cg€ T¢¢ €L'T v¥9 TTT <20€ LEE 6EV 0€C 86'€E 6Lv— GL'T 8V0 Ov'e0c O0€TLT 6T6¢r 0V0Lc LTLy €9V 0L'0T— 66'L— 09'9— €€'T 8¥VST /[8/.— 066ET 0£€¢6T 09€6V. 8Y'0 83T TT0 6T'T 9T
ey Ty'v €2¢ G0¢ TLT T€9 TCT 6T 9v'e 8SY €2¢ 8y 9vv— G8T T0T 00¢SC 08€E0C T18V9 0G0ee LT'6V 9SGV ¥8'0T— T0C— 6.9— 0ST €E€9T <ZI'8— OFV.LET OT'L8T 002.v8 SG80 89T 220 T 6T
8/v ¢S 0cte €8¢ 06T OT'S Ty0o <cT'e SGre 69% 860 TSV L9V— 8L€ GST 09ZLLT OTSLT /Ll2v 0T'€Se vv'iv 06'€ 8G'TT— TT0I—- TIT'S— <¢¢T TTTT ¢88— 06GST 08+70C 097099 SGT'0— 0C€ LTO 60 V1
€y 0cv Lv'e ¢5¢ 68T ¥8S 1T¥0 <cI't Sbe 69v 6TT 0S¥ 89v— 8L€ OV0 O0Cv¥8T OTI8T €C0r OV'19¢ v¥'iv 06'€ 09'TT— ¢v'T1— TT'S— <¢Z'T 96'0T €88— 0S9ST OT'L6T 091099 ST0— 02'€ 020 S8'T €T
05y 80v 16€ EvE 86T G29 620 v.¢C 6E€ TT'S CT'T €8G 98¢— ¥6'¢ OT'T 00¢6T O0S/9T €299 0L09¢ 1I9%y LEV T§°TT— L0Cv— LO0V— GTT TLOT 9.8— 0S/9T 089T¢ 0€¢r.9 9T0— LL'CT S¥O €9T 2T
8y'v vOv Gr'e GIT'€ 86T ¥¢9 60 v.¢ 6€€ TT'S 9OV'T /¥y 08¥— 20€ 92T OLV.T OF8rlT ¢685 0L9¢C 1I9V%y VEV 8V'IT— €6'8e— TT¥— GIT'T LvOT 9.8— 0L/9T 0€.L¢c 0€¢rl9 9T0— 98¢ €¥0 0T 1T
STV L6'€ 98°€ ¥6'C 9€¢C ¢89 000 €8¢ 00¥% 99G 60€ TZv L6€— ¢8¢ ¥vC'T Ov'SEC 0590¢ <€€9 0S6T€ LO6Y €0'S 6V'TT— v€8E— TOv— TTT ¢80T 68— OV'SBT 06'Gec 09'G5¢. €T0— S§9¢ 990 vw'T 0T
G9't €9¢ IS¢ L6¢ 9T¢ S¥9 000 8v¢ 0S€ S6v ST'T 69V /[8V— LS'C¢ <¢¢'T 00S6T 08GLT L08r 0699¢ SSvv 0Sv €5'TT— 6Lve— T¢v— vT'T EPOT 088— 09'89T 0€9T¢ 0€<Cv.9 €T0— OVe O0O¥0 €9T 6

067 €€v 0Cv 69¢C 68T 65F 000 ¢T'c 00€ vev LZT Lvy TSv— ¢€¢ <¢v'0 06'€ST O0€vyPT <¢S'Tyr 00GIC €00V L6'E 8G°TT— G0¢e— <¢v'v— B8T'T LLOT €88— O0S0ST 0800C 016229 ST0— ST¢ TTO 9T 8

L0V vOv 1Iv'e ¥S¢ /L8T 86v 000 LLT 0S¢ vS€ 18T 66'S v.¢— L0C SP'T LL96 LE€96 G88E 00CPT ¢<S'GE vv'e 6S'TT— GT've— 29v— vZT GL'6 ¥88— O06CET OV'ELT 08GTLS 020— 06T TC0— 00T 2L

vy 6cv 1€€ ¢0€ S9T ¢¢'S 00¢ 00€ 00¢ OSv €TT OV 68v— 85¢ vC'T 00¢ST OVIST 0¢9€ 09°LT¢ T¥LE 98¢ SLT1— Pveoge— egge— ST'T €e0T 96'8— OvvrT 0996T 099585  LT'0— T¥'¢ 900 T 9

Sy YOy €€€ 0€¢ S9T Lv9 T¥0o 08T Lg'¢ 8V 1T¢e GL€ vI'v— ¥8T €9T O0GGST 0L8yT 9.°GE  0T'8IC GL'8E 8L'C 8/T1—- 690¢— vv'e— GI'T 9¥6 L68— O06vvT 0€TOC 099585 9T0— 6V'T 600 62T G

L9¢ G9'€ ¢€e 86¢ S9T ¥C9 Tr'0 08T LZ'¢ 8Cv T6¢C vLE€ LIv— 99T OT'T O0LEIT OF'9ST 90€E 0S'8c¢ GL'8 8LE ¢8'TT— 9€'1e—~ vv'e— GT'T ¢96 S6'8— O0SvvT O0L'G6T 099585 9T0— 6¢V'T LO0O— €80 ¥

Ly €Ty T€€ €6'T G9T 0¢'S 850 €L'T €LT 89€ 6L¢C 8L€ 0Cv— ¢€T LSO 0C90T 0€¢0T LETE 080ST veve GC'€ S8'TT— T10/l¢— v9€— 0CT LZ'6 96'8— OV9CT O0€0LT 0€€eres €T0— STT LZ'0— @0 €

197 ¢Sy 0€¢ €6T S9T €19 000 00T 16T 1TIve [8¢ TL€ 62v— 90T LSO OT9ET 088cT <¢€.¢ OV68T 8TVE B8EE 88'TT— 0S§8¢— 8L€— 02T GZ6 006— 099¢T 00¢C.T 0€eres €T0— 680 ¥2O0— vS'0 ¢

¢s'e 8y'e lge v6'T S9T IS 000 TLO T¥T TLC 68¢ 0L€ c¢cv— 8.0 160 €L68 0198 66¢c 0S9¢T €6'8T S8¢C 68'TT— ¥87T¢c— 86€— LZT €26 TO6— 0880T OvcST 000e8y <CT0— 7190 990- 0C0— T

€ed ¢e€d Teéd 0€d 6¢d 82d ZLdd 9¢d Ged ved €2d <ed Ted 0¢d  6Td 8Td L1d 91d STd vid €1d [4%] T1d 0Td 6d 8d Ld 9d Sd vd ed ad d (sy)boj Al

«APNIS SIYL Ul pasn sda1aweded ‘g ajgel



3020 J. Agric. Food Chem., Vol. 46, No. 8, 1998

combination gave the best fit. However, in the present
work we calculated 30 additional parameters for each
molecule, although many of these properties were not
independent and therefore could not be used simulta-
neously in a regression analysis. It was clearly neces-
sary to reduce the number of parameters significantly,
taking into account that there were only 21 molecules
with known RS values (the RS value for the sweet-bitter
compounds being undetermined). One method for doing
this involves inspection of the correlation matrix. Thus,
when two parameters were correlated with r2 > 0.8,
then the parameter with the lowest correlation with
log(RS) was removed. Gradually the number of param-
eters in the regression equation can be reduced until
an acceptable number is reached. The optimum number
of parameters for a given number of molecules is
difficult to estimate, but it is well-known that the
dangers of chance correlation increase significantly with
larger numbers of parameters (Topliss and Edwards,
1979).

Genetic Algorithms. The genetic algorithm method
can also be used to establish the most suitable param-
eters for a regression equation (Rogers and Hopfinger,
1994). The method is applied as follows. All param-
eters, however correlated, can be included. Many
regression equations are developed using a random
choice of parameters. The actual number of parameters
or indeed the form of the equation to be used can be
selected by the user or randomly. The genetic crossover
operator combines random parts of these equations to
give two new equations. If either of these are improve-
ments on these previous equations, as measured by the
lack of fit (LOF) (Friedman, 1988), then they are
adopted as replacements. The smoothing parameter d
in this equation was kept at the default 1.0 value. The
effect of changing d was investigated but was found to
be quite small. This procedure is repeated as many
times as desired, although CERIUS2 has a limit of 106.
The end result of the genetic algorithm process is a set
of regression equations using a limited number of the
available parameters. From the regression equations
chosen, it is possible to observe those parameters that
appear most often and therefore be able to see which
parameters are most closely related to sweetness. The
genetic algorithm calculation was carried out using the
program described previously interfaced with the CE-
RIUS2 software. The genetic algorithm method also
allows the inclusion of nonlinear methods of mapping
data such as spline, quadratic, and offset quadratic and
may include any combination of these within an equa-
tion. This is in contrast with the usual multiple
regression method, which is restricted to linear terms.

Neural Networks. Neural networks are adaptive
learning algorithms based on the brain structure and
have been applied in QSAR for some time (Andrea and
Kalayeh, 1991; Aoyama et al., 1990; So and Karplus,
1996). The neural network contains a number of input
nodes, the independent parameter set, and usually one
output node, the dependent parameter, in this case
log(RS). Between there are a number of hidden nodes
in one or more layers. Each node feeds a value forward
to the next node. This value is assigned a weight. Each
node sums the input weights and, if they are greater
than a threshold, transmits a value to the next node.
Two sets of data are needed: one to train the network
and another to test it. The network is trained by using
numerical or Monte Carlo techniques to adjust the
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weights on each node until the overall RMS errors are
minimized. A major problem is that the number of
hidden nodes cannot be accurately predetermined but
must be established by trial and error. These calcula-
tions were carried out using the TSAR software. It is
important not to include too many nodes in the network
as this will lead to overfitting and memorizing the
dataset, or too few nodes, which will lead to low
predictivity.

Molecular Field Analysis. Molecular field analysis
was carried out within the CERIUS2 software. The
molecules were aligned on the C—N—SO3; moieties using
the lowest energy conformations. Potentials were
sampled for a grid of points in space around the
molecules with OH~, H™, and CHj3 probes. The points
were 2 A apart within a grid of 10 x 12 x 12 A. Other
methods of alignment and other grids did not prove as
successful. Indeed, using a grid of 20 x 20 x 18 A gave
significantly worse results. The potentials for each
probe provided 6 x 7 x 7 values per molecule, making
882 in all. These values were then subjected to a genetic
algorithm to create a suitable linear regression algo-
rithm with log(RS). Although a methyl probe was used,
the resulting grid points were not selected by the genetic
algorithm; indeed, five H* and one OH™ sites were
selected.

RESULTS AND DISCUSSION

PCA and DA. DA was able to separate the 50
molecules into their 3 classes using 11 components. The
parameters used were P4 (sum of atomic polarizabili-
ties), P21 (X component of dipole moment), P7 (energy
of LUMO), P13 (log of partition coefficient), P18 (prin-
cipal moment of intertia, Z component), P27 (3y,), P32
(Verloop B4), P12 (energy of HOMO), P15 (principal
moment of intertia), P24 (molecular connectivity index
%), and P30 (Verloop box B2).

The results obtained using this technique are shown
in Figure 3. Several tests were then carried out in
which the activity of each molecule was assigned
randomly. Though some clustering was subsequently
observed, no class separation was ever achieved.

The PCA was carried out on all 50 molecules, those
that tasted sweet as well as those that tasted sweet-
bitter and bitter. PCA requires independent parameters
as input, and we used the genetic algorithm technique
along with a correlation matrix to choose those param-
eters to be input to this analysis. However, even by
using all of the parameters in the dataset, the PCA
technique was unable to give separation of all three
classes. For sweet and sweet-bitter molecules the
technique fared better, being clearly able to distinguish
between the classes. The results for this are listed in
Table 4. The PCA on parameters P4, P6, P7, P10, P19,
P20, P23, P28, and P31 gave rise to principal compo-
nents that explained, respectively, 0.385, 0.622, 0.744,
0.836, 0.904, 0.945, 0.974, 0.987, and 1.000 of the data.
PC1 was plotted against PC2 to obtain the graph shown
in Figure 4. We then repeated the PCA calculation for
the sweet-tasting molecules only. However, neither a
2D nor a 3D graph incorporating the first two or first
three PCs gave rise to any clustering. The clustering
method then only gives the distinction between classes
and is not able to distinguish between degrees of
sweetness.

Regression Analyses. RS data have been reported
previously by us for compounds 1—3, 7—10 (Benson and
Spillane, 1976), and 15—18 (Spillane et al., 1989). Eight
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Figure 3. Results from the DA. Molecules with sweet taste (1—21) are designated S, molecules with sweet-bitter taste (22—41),

BS, and molecules with bitter

taste (42—50), B.

Table 3. Results from Genetic Algorithm Calculations?

predictions for log(RS)
for molecules 3, 14, and 18°

type of eq LOF r2 eq 3(0.46) 14(0.94) 18(1.05)
linear 0.125 0.624  —1.34 + 0.29(P26) + 0.01(P6) 0.77 1.74 1.27
linear 0.126 0.624  —0.25+ 0.49(P25) — 0.52(P21) 0.58 1.25 1.36
linear 0.112 0.754 —1.22 +0.37(P2) + 0.47(P28) — 0.24(P32) 0.49 111 1.07
linear 0.113 0.752 0.07 + 0.29(P26) + 0.01(P6) — 0.27(P32) 0.77 1.46 1.19
linear 0.152  0.768 1.97 + 0.15(P8) — 0.33(P32) + 0.79(P1) + 0.01(P16) 0.59 1.21 121
linear 0.163  0.751 0.84 + 0.01(P6) — 0.43(P30) — 0.44(P6) + 0.02(P14) 0.89 1.28 1.19
spline¢ 0.178 0.784 1.19 + 0.0001(0P4—54870) — 0.596(P9—1.10) —2.370([2.848-P310) 0.88 2.72 1.78
quadratic  0.116  0.745 1.07 + 0.042(P25?) + 0.003(P142) — 0.0498(P322) 0.73 1.27 1.40
quadratic  0.113  0.827 —0.51 + 0.034(P312?) + 0.633(P27%) — 0.032(P33?) 0.73 1.27 1.40
free 0.110 0.853 0.089 + 0.239(P24) — 0.8662([2.483-P250) + 0.898([0.139-P21[) 0.56 0.47 1.91

a For parameter numbers Pn refer to Table 2. ® Experimental values in parentheses. ¢ Truncated power splines such that f(x)—al= 0

if (f(x)—a) < 0 else = f(x)—a.

Table 4. Results of the PCA

principal component

parameter 1 2 3 4 5 6 7 8 9
P4 0.484 —0.023 —0.066 —0.094 —0.219 0.115 0.655 —0.331 0.391
P6 0.329 0.461 0.039 0.310 0.070  —0.007 —0.307 0.635 —0.281
P7 0.459 —0.235 -0.108 -0.269 —0.133 0.016 0.110 0.199 —0.762
P10 —0.435 0.134 —0.028 0.351 —0.127 0.607 0.411 —-0.029 —0.337
P19 0.084 —0.141 0.861 0.032 0.423 0.011 0.211 —0.009 —0.085
P20 0.166 0.557 0.107 0.348 -—-0.191 —0.382 0.239 0.538 —0.009
P23 0.172 —0.333 —0.414 0.550 0.587 —0.111 0.150 0.080 0.008
P28 0.383 —0.251 0.185 0.374 -0.321 0.471  —0.409 0.268 0.227
P31 0.214 0.459 —0.153 —0.366 0.500 0.487 —0.062 0.280 0.126
fraction of variance explained 0.385 0.237 0.121 0.092 0.068 0.041 0.029 0.015 0.011
cumulative total of variance explained 0.385 0.622 0.744 0.836 0.904 0.945 0.974 0.989 1.000
eigenvalue 3.463 2.137 1.093 0.831 0.612 0.367 0.262 0.132 0.103

more compounds, 4—6, 11-14, and 20, have been
synthesized in this work, and their RS values are given
in Table 1. An RS value for compound 21 has been
derived from literature data (Nofre and Pautet, 1975a,b).
In Table 2 the log(RS) values for all 21 compounds are
given. We first continued our regression analysis

methodology established previously (Spillane et al.,
1996) developing equations involving just four param-
eters, the logs of the capacity factors (ky), Taft sigma
star (o*) values, Corey—Pauling—Koltun volumes (Vcpk)
and third-order molecular connectivities (3ym). Third-
order molecular connectivities have proved useful in
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Table 5. Results of the DA2

parameter constant parameter constant
P6 —0.005 P25 —0.585
P8 0.593 P28 0.067
P27 0.185 P31 0.514
P21 —0.035 P32 0.030

a Composition of the discriminant axis in terms of the param-
eters used in the model.

Table 6. Results from Neural Network Calculations

network configuration 811 821 831 841 8421 881
training set RMS error 0.253 0.036 0.030 0.028 0.028 0.030
test set RMS error 0.262 0.322 0.345 0.309 0.339 0.262

log(RS)
molecule exptl calcd
1 —0.222 —0.152 —0.224 —-0.230 -0.215 —0.225 —0.233
32 0.462 0.416 0.746 0.882 0.488 0.848 0.379
2 0.544 0.453 0570 0.553 0.551 0.541 0.551
4 0.832 0.908 0.839 0.831 0.833 0.853 0.845
20 0.934 0.927 0.944 0939 0927 0.926 0.927
142 0.939 1515 1616 1603 1.601 1.600 1.601
7 1.000 0.992 0988 0.999 1.000 1.002 1.005
17 1.049 1048 1.002 1.040 1.039 1035 1.054
182 1.093 1261 1181 1.196 1.349 1227 1.272
21 1.180 1507 1.184 1.194 1.185 1.186 1.184
16 1185 1366 1.179 1205 1215 1221 1.194
11 1199 1375 1228 1220 1.195 1.207 1.189
6 1.204 1212 1226 1209 1206 1.198 1.202
5 1.292 1333 1270 1.271 1.260 1.256 1.273
19 1.389 1283 1403 1.393 1.378 1400 1.408
15 1417 1342 1388 1.389 1408 1410 1414
10 1.444 1536 1.459 1.468 1.466 1.425 1.446
9 1533 1326 1539 1517 1521 1528 1.558
8 1613 1513 1627 1608 1.611 1.624 1.620
12 1632 1472 1615 1605 1619 1628 1.623
13 1.842 1643 1.837 1.818 1.811 1.842 1.839

a Molecules in the test set.

correlating sweetness and structure (Daniel and Whis-
tler, 1982) and were therefore preferred to lower order
molecular connectivities. However, because of the
interrelationship between log(ky)and 3y, (see footnote,
Table 2), they could not be used in the same regression
equation. Log(kw) values also correlate with Vcpk values
and were not used in the same equation. As k,, was
experimentally determined, it was decided to use it
preferentially in this study.

Among the sweet-bitter group of compounds, 22—32
and 36—41 have been synthesized and assessed for taste
quality (sweet, bitter, sour, salty) previously (Spillane
et al.,, 1993, 1994). Compounds 33—35 have been
synthesized in this work, and their taste assessment
places them in the sweet-bitter category (see Experi-
mental Procedures). Some years ago Greenberg (1990),
using sweet threshold data for the seven sulfamates 1—3
and 7—10 for which such data were then available
(Benson and Spillane, 1976), derived the equation

log(1/c) = 0.68 log(P) + 0.05
[n=7,r*=0.74, s = 0.33]

where c is the threshold concentration for sweetness and
P is a hydrophobicity constant calculated from frag-
mentation constants. This is not a particularly good
correlation and is very limited, with just seven data
points giving an RS spread (least to most sweet) of only
65. However, it does point to the importance of hydro-
phobicity in the attempt to correlate sweetness quan-
titatively (Daniel, 1989). All available RS data on
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sulfamates have now been brought together (Table 2).
The spread of RS is now >100-fold, and the diversity of
structural types is evident. Capacity factors log ky,
which are considered to be a measure of hydrophobicity,
were measured by reversed-phase HPLC. These values
correlate very well with partition coefficients (Brau-
mann, 1986) and the Hansch & parameter (Hansch et
al., 1991) and for the highly water-soluble sodium
sulfamates in this work are much more readily meas-
ured than partition coefficients in n-octanol/water. The
following equation was derived:

log(RS) =1.21 log ky, + 1.01
[n=21,r*=0.62,s=0.29]

Because electronic factors feature prominently in sev-
eral sweetness QSARs, Taft o* values were also used
in the regression analysis, leading to the equation

log(RS) =1.12 log k,, + 0.0960* + 0.995
[n =21, r>=0.63, s = 0.295]

These relationships are quite good considering the
diversity of the structures (aliphatic, alicyclic, aromatic,
and heterocyclic) encompassed in the analysis. Values
of log kw, 3ym, and o* are shown in Table 2 as parameters
P1, P2, and P3, respectively.

We then used the genetic algorithm method with all
of the parameters to investigate whether preferable
equations could be found and to establish the most
appropriate parameters for further study. Input for the
genetic algorithm does not preclude highly correlated
parameters, and all values in Table 2 were permitted
to be included.

In the program it is possible to select the equation
required, and we chose linear regression with two, three,
or four variables; spline with three or four variables;
guadratic with three or four variables; and a “free
method” in which the program selects the most useful
form of each parameter in the equation. The best
equations found, as indicated by the LOF and r? values
and cross-validated r?, are presented in Table 3. Whereas
higher values of r?2 are desirable, the value of LOF
should be at a minimum to give the best fit to the data.
With linear equations, and two parameters, it is re-
markable that the highest r2 values are only 0.750, only
slightly better than those obtained by us previously
using just parameters P1—P4. It would seem therefore
that this is the best value that can be obtained with
two such parameters. With three parameters, the r2
values increase signficantly, and many equations have
r2 values of ~0.85. The LOF values can be compared
directly with those for two parameters and indicate that
fits with three parameters are significantly better. The
quadratic fits show an increase in r? but also an increase
in the LOF, which suggests that they do not represent
a significant improvement. The spline method leads to
increases in both r?2 and LOF. The best fit of all as
measured by both the LOF (0.042) and the r? value
(0.942) is found in the “free” calculation, when the
program selects the most appropriate type of equation
from those available and in this case chooses a combi-
nation of spline and linear with three parameters.

Whereas the r? value gives an idea of how well the
equation fits the dataset, it is not a good measure of
predictability. For this the cross-validated r? (XVr?) is
used. This is calculated by alternatively holding each



QSAR Studies of Sulfamates

J. Agric. Food Chem., Vol. 46, No. 8, 1998 3023

2.0
588
1.50 — «B40
P
r
1
S I 2586
C
i
521
4
0.5 |—
1 .507
c
[+]
; 8.0 — .504865
o 503 -
n
e
n -9.50 —
t
2
-1.8 {—
502
-1.58 1—
501
! ] 1 | 1
-2.0 -1.0 8.0 1.0 2.0

Principal Component 1

Figure 4. Results from the PCA. Plot of PC1 against PC2 shows the clustering between sweet and sweet-bitter compounds.
Sweet molecules are numbered 1—-21 and sweet-bitter molecules, 22—41.

molecule out of the equation and comparing its least-
squares error to that of all the others. For some of the
equations, especially the free method ones, we can see
that we are achieving high predictability. As a further
test of the predictive power of the method, we omitted
three compounds (3, 14, and 18) from the calculation.
These were chosen to give the best range of sweetness
value and structural type. In Table 3 are quoted the
values predicted by each equation. Generally the
predictive power is high for the best equations. To
confirm the validity of the results, molecules were
assigned random activities by two methods. First, the
real activities of the molecules were randomly redis-
tributed to the dataset, and second, a program was used
to generate a random number in the range of —0.2 to
1.5, which was used as the log(RS) score for each
molecule. The genetic algorithm technique was applied
to both of these datasets using equation types previously
having been found to give good results: linear with
three and four parameters, spline with three param-
eters, and quadratic with four parameters. r? values
of ~0.55 with LOF scores of ~0.2 were recorded. Cross-
validated r? scores never rose above 0.4. The paramat-
ers used by these equations were not in the set we had
previously established as being important for sweetness.
This leads us to conclude that we are observing a real
trend in the data and not an artifact of the calculations.

Neural Networks. In the neural network, we used
the same set of nine independent parameters that were
used successfully in the PCA. Of the 21 molecules to
be considered, 18 were taken as the training set and 3
as the test set. The test set comprised molecules 3, 14,
and 18. There were nine input parameters, and we
varied the number of hidden nodes but found very little
difference in the results as indicated by the RMS values
for the training set and the test set (Figure 5). Results

for the 9—3—1 network are perhaps the best with RMS
values for the training set of 0.0157 and for the test set
of 0.2326. The agreement between measured and
calculated values for log(RS) are for molecule 3 (0.462)
0.421, molecule 14 (0.941) 1.436, and molecule 18 (1.389)
1.276.

Molecular Field Analysis. The molecular field
analysis was carried out on the 21 sweet-tasting mol-
ecules, which were superimposed via the C—NH—-SO;
moiety. Genetic algorithm methods were employed to
obtain regression equations using the potential values
on the grid points. The best equation used six such
points, five from the H* probe and one from the OH~
probe. The r? value was 0.958, LOF 0.045 and XVr?
0.902. Although these were the best values found, many
similar values were obtained using the genetic algo-
rithm. The locations of these six points together with
their coefficients in the regression equation are shown
in Figure 6.

CONCLUSIONS

We have extended our set of sweetness data by
introducing several new compounds, and we have used
a variety of statistical techniques to analyze these data.
We have used both DA and PCA to cluster the molecules
into their classes, DA being able to separate sweet/
sweet-bitter/bitter and PCA being able to separate
sweet/sweet-bitter. The clustering of sweet and sweet-
bitter compounds via the PCA was a particularly
significant result as the PCA is an unsupervised learn-
ing method that requires no prior knowledge of the
classification. The genetic algorithm approach has
proved particularly useful not only in formulating good
regression equations but also in establishing the most
important structural parameters for subsequent use in
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QSARs. The established neural network technique
proved to have some predictive power but generally was
not so successful. However, the most valuable tech-
nique for this set of compounds proved to be the
molecular field analysis, which provided the highest r?
and XVr2 (r2 = 0.958, XVr2 = 0.902) of all the techniques
and is likely to have the best predictive power.

We now have developed several techniques that used
together should allow us to classify the taste (sweet
versus sweet-bitter versus bitter) for any new sulfamate
and also give a confident prediction of the relative
sweetness of the molecule. There were two major
handicaps in our analysis. It would have been prefer-
able in this analysis to have recourse to sweetness data
on many more sulfamates; it also would have been
preferable to have a larger range of activity data than
that found for log(RS) of —0.20 to 1.85. These methods
have been applied to a range of related compounds, the
sulfamates. It remains to be seen whether they could
be applied successfully to the whole range of molecules
that have interesting taste properties.

EXPERIMENTAL PROCEDURES

Synthesis. Thirteen compounds were synthesized in this
work, compounds 4—6, 11—14, 20, 33—35, 45, and 46. All gave
satisfactory C, H, and N (within +0.5 of the calculated values)
except the following: 4 (CsH12NSO3;Na-0.5H,0) C, 30.9, re-
quires 30.3; 11 (C;H14NSOsNa-2.5H,0) C, 32.9, requires 32.3;
and 35 (C;H;NSOzNa-1.5H,0) H, 3.07, requires 3.69. Most
of the sulfamates contain water of crystallization, which is
normal for these salts (Benson and Spillane, 1976). Drying
at high temperatures must be avoided since in the case of
aromatic sulfamates, isomerization of the sulfamates can occur

(Alexander, 1948). IR spectra were measured in Nujol mulls
on a 983G Perkin-Elmer spectrophotometer, and all gave the
usual characteristic bands associated with the sulfamate
function (Vaugnat and Wagner, 1957; Nofre and Pautet,
1975a,b): 3400—3190 (v NH), 1238—1210 (¥ asym SOj3) 1203—
1170 (v-symm SOgz), 1071—-1040 (v sym SOgz), and 730—660
cm™t (v NS).

Sensory Analysis. In our laboratory we have previously
determined RS values for compounds 1—3 and 7—10 (Benson
and Spillane, 1976) and compounds 15—18 (Spillane et al.,
1989). In the current work we have determined RS values
for compounds 4—6, 11—-14, 19, and 20. All RS values were
determined compared to a 3% w/w sucrose solution as previ-
ously described (Spillane et al., 1989). The precision of the
RS value for the “parent” sulfamate (cyclamate), 8, is 41 +
1.5, on the basis of four determinations by three different taste
panels over a number of years. Thus, the deviation of this
value is <4%. 11 has been determined previously as 15
(Daniel, 1989) in agreement with our value of 15. Generally,
the RS values should be accurate to within 5%. Because of
the very low RS of 1 and the estimations involved, the value
obtained for this may be less precise. Similarly for 21, an RS
has been estimated (see footnote, Table 2) and may not be as
accurate as the experimentally determined values.

The taste panel procedure for assessing the taste quality of
33—35 has been described in detail in earlier work (Spillane
et al,, 1994). In the present work six trained assessors were
used, and the following are the percentages of assessors giving
the tastes sweet, sour, bitter, salty, tasteless, and sweet
aftertaste: 33, 0, 0, 100, 0, 0, 100%; 34, 0, 0, 100, 0, 0, 60%;
and 35, 0, 0, 100, O, 0, 80%.

Capacity Factor (ky) Measurements. k, values were
determined by reversed-phase HPLC using a Technopak
10C18 column. A Milton Roy CM4000 multiple solvent
delivery system and an Altec refractive index detector were
used in the determination. A flow rate of 0.5 mL/min was
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Figure 6. Results from the molecular field analysis. The
molecules are overlapped via the NH—SO3; moiety. The mo-
lecular field at all grid points was calculated. The field values
at the six specific (illustrated) grid points were selected by the
genetic algorithm as producing the best regression equation
with the coefficients in square brackets.

maintained, and the eluent was water. Potassium bromide
was used as a standard in each run, and k,, was calculated
from the equation

Ky = (trnnsosna — tker)/teer

where trnhsosna and txsr are the retention times of the
sulfamate under study and potassium bromide, respectively.
20 had an exceptionally long retention time, and use of the
value of ky (—1.005) led to a substantial deviation by this
compound in the subsequent QSAR analysis. Thus, the value
of kyw was calculated for 20 (see footnote, Table 2). A calculated
value of ky, had to be used for 21 also because this compound
was not available to us (see footnote, Table 2).
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